Sunday 6 August 2017

Como Fazer Média Móvel Em Matlab


Eu preciso calcular uma média móvel em uma série de dados, dentro de um loop for. Eu tenho que começar a média móvel sobre N9 dias. O array Im computing in é 4 séries de 365 valores (M), que são valores médios de outro conjunto de dados. Eu quero traçar os valores médios dos meus dados com a média móvel em um gráfico. Eu pesquisei um pouco sobre as médias móveis eo comando conv e encontrei algo que eu tentei implementar no meu código. Então, basicamente, eu computo o meu médio e plotá-lo com uma média móvel (errada). Eu escolhi o valor de wts fora do site mathworks, de modo que está incorreto. (Fonte: www. mathworks. nl/help/econ/moving-average-trend-estimation) Meu problema, porém, é que eu não entendo o que este wts é. Alguém poderia explicar Se tem algo a ver com os pesos dos valores: que é inválido neste caso. Todos os valores são ponderados da mesma forma. E se eu estou fazendo isso inteiramente errado, eu poderia obter alguma ajuda com ele Meus mais sinceros agradecimentos. Ask Sep 23 14 at 19:05 Usando conv é uma excelente maneira de implementar uma média móvel. No código que você está usando, wts é o quanto você está pesando cada valor (como você adivinhou). A soma desse vetor deve ser sempre igual a um. Se você deseja pesar cada valor uniformemente e fazer um filtro de tamanho N em movimento, então você gostaria de fazer Usando o argumento válido em conv resultará em ter menos valores em Ms do que você tem em M. Use o mesmo se você não se importa os efeitos de Zero preenchimento. Se você tiver a caixa de ferramentas de processamento de sinal, você pode usar o cconv se quiser experimentar uma média móvel circular. Algo como você deve ler a documentação conv e cconv para obter mais informações se você já havent. Moving-médio filtro de dados de tráfego Este exemplo mostra como suavizar os dados de fluxo de tráfego usando um filtro de média móvel com uma janela deslizante de 4 horas. A seguinte equação de diferenças descreve um filtro que calcula a média da hora atual e das três horas anteriores de dados. Importe os dados de tráfego e atribua a primeira coluna de contagens de veículos ao vetor x. Crie os vetores de coeficiente de filtro. Calcule a média móvel de 4 horas dos dados e trace os dados originais e os dados filtrados. MATLAB e Simulink são marcas registradas da The MathWorks, Inc. Consulte www. mathworks / marcas comerciais para obter uma lista de outras marcas comerciais de propriedade da The MathWorks, Inc. Outros produtos ou marcas são marcas comerciais ou marcas registradas de seus respectivos proprietários. Selecione seu PaísCriado em quarta-feira, 08 de outubro de 2008 20:04 Atualizado em quinta-feira, 14 de março de 2013 01:29 Escrito por Batuhan Osmanoglu Hits: 38963 Média móvel Em Matlab Muitas vezes eu me encontro na necessidade de calcular a média dos dados que tenho para reduzir o ruído um pouco. Eu escrevi funções de casal para fazer exatamente o que eu quero, mas matlabs construído em função de filtro funciona muito bem também. Aqui Ill escrever sobre 1D e 2D média dos dados. 1D filtro pode ser realizado usando a função de filtro. A função de filtro requer pelo menos três parâmetros de entrada: o coeficiente de numerador para o filtro (b), o coeficiente do denominador para o filtro (a) e os dados (X), é claro. Um filtro de média em execução pode ser definido simplesmente por: Para dados 2D, podemos usar a função Matlabs filter2. Para obter mais informações sobre como o filtro funciona, você pode digitar: Aqui está uma implementação rápida e suja de um filtro de média móvel 16 por 16. Primeiro precisamos definir o filtro. Uma vez que tudo o que queremos é a contribuição igual de todos os vizinhos, podemos apenas usar a função uns. Nós dividimos tudo com 256 (1616) desde que nós não queremos mudar o nível geral (amplitude) do sinal. Para aplicar o filtro podemos simplesmente dizer o seguinte Abaixo estão os resultados para a fase de um interferograma SAR. Neste caso, Range está no eixo Y e Azimuth é mapeado no eixo X. O filtro tinha 4 pixels de largura em Alcance e 16 pixels de largura em Azimute. Login SearchDocumentation tsmovavg saída tsmovavg (tsobj, s, lag) retorna a média móvel simples para o objeto de séries temporais financeiras, tsobj. Lag indica o número de pontos de dados anteriores usados ​​com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (vetor, s, lag, dim) retorna a média móvel simples para um vetor. Lag indica o número de pontos de dados anteriores usados ​​com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (tsobj, e, timeperiod) retorna a média móvel ponderada exponencial para a série de tempo financeiro objeto, tsobj. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Percentual Exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1). Saída tsmovavg (vetor, e, timeperiod, dim) retorna a média móvel ponderada exponencial para um vetor. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. (2 / (intervalo de tempo 1)). A saída tsmovavg (tsobj, t, numperiod) retorna a média móvel triangular para a série de tempo financeiro objeto, tsobj. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. Saída tsmovavg (vetor, t, numperiod, dim) retorna a média móvel triangular para um vetor. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. A saída tsmovavg (tsobj, w, weights) retorna a média móvel ponderada para o objeto da série temporal financeira, tsobj. Fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados ​​para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (vetor, w, pesos, dim) retorna a média móvel ponderada para o vetor fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados ​​para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (tsobj, m, numperiod) retorna a média móvel modificada para o objeto da série de tempo financeiro, tsobj. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. A saída tsmovavg (vetor, m, numperiod, dim) retorna a média móvel modificada para o vetor. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. Dim 8212 dimensão para operar ao longo de inteiro positivo com valor 1 ou 2 Dimensão para operar ao longo, especificado como um inteiro positivo com um valor de 1 ou 2. dim é um argumento de entrada opcional, e se não for incluído como uma entrada, o padrão Valor 2 é assumido. O padrão de dim 2 indica uma matriz orientada a linha, em que cada linha é uma variável e cada coluna é uma observação. Se dim 1. a entrada é assumida como sendo um vetor de coluna ou uma matriz orientada a coluna, onde cada coluna é uma variável e cada linha uma observação. E 8212 Indicador para vetor de caracteres de média móvel exponencial A média móvel exponencial é uma média móvel ponderada, em que timeperiod é o período de tempo da média móvel exponencial. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Porcentagem exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1) período de tempo 8212 Comprimento do período de tempo não-negativo inteiro Selecione seu País29 Setembro, 2013 Média móvel por convolução O que é média móvel e para que serve? Convolução A média móvel é uma operação simples usada geralmente para suprimir o ruído de um sinal: nós ajustamos o valor de cada ponto à média dos valores em sua vizinhança. Por uma fórmula: Aqui x é a entrada ey é o sinal de saída, enquanto o tamanho da janela é w, suposto ser ímpar. A fórmula acima descreve uma operação simétrica: as amostras são tomadas de ambos os lados do ponto real. Abaixo está um exemplo da vida real. O ponto em que a janela é colocada realmente é vermelho. Valores fora de x são supostos ser zeros: Para brincar e ver os efeitos da média móvel, dê uma olhada nesta demonstração interativa. Como fazê-lo por convolução Como você pode ter reconhecido, o cálculo da média móvel simples é semelhante à convolução: em ambos os casos, uma janela é deslizada ao longo do sinal e os elementos na janela são resumidos. Então, dar-lhe uma tentativa de fazer a mesma coisa usando convolução. Use os seguintes parâmetros: A saída desejada é: Como primeira aproximação, vamos tentar o que obtemos convolvendo o sinal x pelo k kernel seguinte: A saída é exatamente três vezes maior do que o esperado. Também pode ser visto que os valores de saída são o resumo dos três elementos na janela. É porque durante a convolução a janela é deslizada ao longo, todos os elementos nele são multiplicados por um e, em seguida, resumida: yk 1 cdot x 1 cdot x 1 cdot x Para obter os valores desejados de y. A saída deve ser dividida por 3: Por uma fórmula incluindo a divisão: Mas não seria ótimo para fazer a divisão durante a convolução Aqui vem a idéia, reorganizando a equação: Então vamos usar o k kernel seguinte: Desta forma, vamos Obter a saída desejada: Em geral: se queremos fazer a média móvel por convolução tendo um tamanho de janela de w. Vamos usar o seguinte k kernel: Uma função simples fazendo a média móvel é: Um exemplo de uso é:

No comments:

Post a Comment